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Notation

Following notation is used throughout this text:

N set of natural numbers excluding zero
N0 set of natural numbers including zero
R set of real numbers
t discrete time moment; t ∈ N0

at value of quantity a at time t; at ∈ Rn, n ∈ N
at|t′ quantity with two indices: t and t′

there is no implicit link between at, at|t′ and at′
at:t′ sequence of quantities (at, at+1, . . . , at′−1, at′)
p(at) probability density function1 of quantity a at time t (unless noted

otherwise)
p(at|bt′) conditional probability density function of quantity a at time t given

value of quantity b at time t′
δ(a) Dirac delta function; used exclusively in context of probability den-

sity functions to denote discrete distribution within framework of
continuous distributions2

N (µ,Σ) multivariate normal (Gaussian) probability density function with
mean vector µ and covariance matrix Σ

1for the purpose of this text, probability density function p is multivariate non-negative function
Rn → R;

∫
supp p

p(x1, x2, . . . , xn) dx1dx2 · · · dxn = 1
2so that

∫∞
−∞ f(x)δ(x − µ) dx = f(µ) and more complex expressions can be derived using

integral linearity and Fubini’s theorem.
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Introduction

Bayesian filtering (or, recursive Bayesian estimation) is a very promising approach
to estimation of dynamic systems; it can be applied to a wide range of real-world
problems in areas such as robotics [17, 6] (tracking, navigation), environmental
simulations — e.g. tracking of the radioactive plume upon nuclear accident [8, 7, 10],
econometrics and many more.

While many Bayesian filtering algorithms are simple enough to be implemented
in software on ad-hoc basis, it is proposed that a well designed library can bring
many advantages such as ability to combine and interchange individual methods,
better performance, programmer convenience and a tested code-base.

The text is organised as follows:

1. Theoretical background of Bayesian filtering is presented in the first chapter
along with a description of well-known Bayesian filters: the Kalman filter, the
particle filter and a simple form of the marginalized particle filter.

2. In chapter 2 a software analysis for a desired library for Bayesian filtering is
performed: requirements are set up, general approaches to software development
are discussed and programming languages C++, MATLAB and Python and their
implementations are compared. Interesting results are achieved when Python is
combined with Cython.

3. The PyBayes library that was developed as a part of this thesis is presented.
PyBayes is written in Python with an option to use Cython and implements all
algorithms presented in the first chapter. Performance of PyBayes is measured
and confronted with concurrent implementations that use different implementa-
tion environments.

Bayesian filtering is a subtask of a broader topic of Bayesian decision-making [18];
while decision-making is not covered in this text, we expect the PyBayes library to
form a good building block for implementing decision-making systems.
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Chapter 1

Basics of Recursive Bayesian
Estimation

In following sections the problem of recursive Bayesian estimation (Bayesian fil-
tering) is stated and its analytical solution is derived. Later on, due to practical
intractability of the solution in its general form, a few methods that either simplify
the problem or approximate the solution are shown.

1.1 Problem Statement

Assume a dynamic system described by a hidden real-valued state vector x which
evolves at discrete time steps according to a known function ft (in this text called
process model) as described by (1.1).

xt = ft(xt−1, vt−1) (1.1)

Variable vt in (1.1) denotes random process noise, which may come from var-
ious sources and is often inevitable. Sequence of vt is assumed to be identically
independently distributed random variable sequence.

The state of the system is hidden and can only be observed though a real-
valued observation vector y that relates to the state x as in (1.2), but adds further
observation noise w.

yt = ht(xt, wt) (1.2)

In (1.2) ht is known function called observation model in this text and wt is iden-
tically independently distributed random variable sequence that denotes observation
noise.

The goal of recursive1 Bayesian estimation is to give an estimate of the state xt
1by the word recursive we mean that it is not needed to keep track of the whole batch of previous

observations in practical methods, only appropriate quantities from time moments t− 1 and t are
needed to estimate xt. However, this does not apply to the derivation of the solution, where the
notation of whole batch of observations y1:t is used.
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given the observations y1:t provided the knowledge of the functions ft and ht. More
formally, the goal is to find the probability density function p(xt|y1:t). Theoretical
solution to this problem is known and is presented in next section.

1.2 Theoretical solution

At first, we observe that probability density function p(xt|xt−1) can be derived from
the process model (1.1) (given the distribution of vk) and that p(yt|xt) can be derived
from the observation model (1.2) respectively. (given the distribution of wk)

Because recursive solution is requested, suppose that p(xt−1|y1:t−1) and p(x0) are
known2 in order to be able to make the transition t− 1 → t.

In the first stage that can be called prediction, prior probability density func-
tion p(xt|y1:t−1) is calculated without knowledge of yt. We begin the derivation by
performing the reverse of the marginalization over xk−1.

p(xt|y1:t−1) =

∫ ∞
−∞

p(xt, xt−1|y1:t−1) dxt−1

Using chain rule for probability density functions, the element of integration can
be split.

p(xt|y1:t−1) =

∫ ∞
−∞

p(xt|xt−1, y1:t−1)p(xt−1|y1:t−1) dxt−1

With an assumption that the modelled dynamic system (1.1) possesses Markov
Property3, p(xt|xt−1, y1:t−1) equals p(xt|xt−1). [1] This leaves us with the result (1.3).

p(xt|y1:t−1) =

∫ ∞
−∞

p(xt|xt−1)p(xt−1|y1:t−1) dxt−1 (1.3)

As we can see, prior probability density function only depends on previously
known functions and therefore can be calculated.

We continue with the second stage that could be named update, where new obser-
vation yt is taken into account and posterior probability density function p(xt|y1:t)
is calculated. Bayes’ theorem can be used to derive posterior probability density
function (1.4).

p(xt|y1:t) =
p(yt|xt, y1:t−1)p(xt|y1:t−1)

p(yt|y1:t−1)
(1.4)

According to the observation model (1.2) and assuming Markov property, yt only
depends on xt. That is p(yt|xt, y1:t−1) = p(yt|xt). Therefore posterior probability
density function can be further simplified into (1.5).

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(1.5)

2p(x0) can be called initial probability density function of the state vector.
3an assumption of independence that states that system state in time t only depends on system

state in t− 1 (and is not directly affected by previous states).
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While both probability density functions in the numerator of (1.5) are already
known, p(yt|y1:t−1) found in the denominator can be calculated using the formula
(1.6), where marginalization over xt is preformed. Quantity (1.6) can also be inter-
preted as marginal likelihood (sometimes called evidence) of observation. [15]

p(yt|y1:t−1) =

∫ ∞
−∞

p(yt|xt)p(xt|y1:t−1) dxt (1.6)

Computing (1.6) isn’t however strictly needed as it does not depend on xt and
serves as a normalising constant in (1.5). Depending on use-case the normalising
constant may not be needed at all or may be computed alternatively using the fact
that p(xt|y1:y) integrates to 1.

We have shown that so called optimal Bayesian solution[1] can be easily analyti-
cally inferred using only chain rule for probability density functions, marginalization
and Bayes’ theorem. (equations (1.3), (1.5) and (1.6) forming the main steps of the
solution) On the other hand, using this method directly in practice proves difficult
because at least one parametric multidimensional integration has to be performed
(in (1.3)), which is (in its general form) hardly tractable for greater than small state
vector dimensions.

This is a motivation for various simplifications and approximations among which
we have chosen a Kalman filter described in the next section and a family of particle
filters described later.

1.3 Kalman Filter

The Kalman filter4 poses additional set of strong assumptions on modelled dy-
namic system, but greatly simplifies the optimal Bayesian solution (1.3), (1.5) into
a sequence of algebraic operations with matrices. On the other hand, when these
requirements can be fulfilled, there is no better estimator in the Bayesian point of
view because the Kalman filter computes p(xt|y1:t) exactly.5

Assumptions additionally posed on system by the the Kalman filter are:

1. ft in the process model (1.1) is a linear function of xt and vt.
2. vt ∼ N (0, Qt) meaning that process noise vt is normally distributed with zero

mean6 and with known covariance matrix Qt.
3. ht in the observation model (1.2) is a linear function of xt and wt.
4. wt ∼ N (0, Rt) meaning that observation noise wt is normally distributed with

zero mean and with known covariance matrix Rt.
5. initial state probability density function is Gaussian.

It can be proved that if the above assumptions hold, p(xt|y1:t) is Gaussian for all
t > 0. [11] Furthermore, given assumptions 1. and 2. the process model (1.1) can be

4first presented by Rudolf Emil Kalman in 1960.
5not accounting for numeric errors that arise in practical implementations.
6zero mean assumption is not strictly needed, it is however common in many implementations.
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reformulated as (1.7), where At is real-valued matrix that represents ft. Using the
same idea and assumptions 3. and 4. the observation model (1.2) can be expressed
as (1.8), Ct being real-valued matrix representing ht. Another common require-
ment used below in the algorithm description is that vt and wt are stochastically
independent.

xt = Atxt−1 + v̂t−1 At ∈ Rn,n n ∈ N (1.7)
yt = Ctxt + ŵt Ct ∈ Rj,n j ∈ N j ≤ n (1.8)

Note that we have marked the noises vt and wt as v̂t and ŵt when they are
transformed through At, respectively Ct matrix. Let also Q̂t denote the covariance
matrix of v̂t and R̂t denote the covariance matrix of ŵt in further text.

At this point we can describe the algorithm of the Kalman filter. As stated above,
posterior probability density function is Gaussian and thus can be parametrised by
mean vector µ and covariance matrix P . Let us denote posterior mean from previous
iteration by µt−1|t−1 and associated covariance by Pt−1|t−1 as in (1.9).

p(xt−1|y1:t−1) = N (µt−1|t−1, Pt−1|t−1) (1.9)

Prior probability density function (1.10) can then be calculated as follows: [1]

p(xt|y1:t−1) = N (µt|t−1, Pt|t−1) (1.10)
µt|t−1 = Atµt−1|t−1

Pt|t−1 = AtPt−1|t−1A
T
t + Q̂t−1

Before introducing posterior probability density function it is useful to establish
another Gaussian probability density function (1.11) that is not necessarily needed,
but is useful because it represents marginal likelihood (1.6).

p(yt|y1:t−1) = N (νt|t−1, St|t−1) (1.11)
νt|t−1 = Ctµt|t−1

St|t−1 = CtPt|t−1C
T
t + R̂t

The update phase of the Kalman filter can be performed by computing so-called
Kalman gain matrix (1.12), posterior probability density function (1.13) is then
derived from prior one using the Kalman gain Kt and observation yt. [1]

Kt = Pt|t−1C
T
t S
−1
t|t−1 (1.12)

p(xt|y1:t) = N (µt|t, Pt|t) (1.13)
µt|t = µt|t−1 +Kt(yt − νt|t−1)
Pt|t = Pt|t−1 −KtCtPt|t−1

In all formulas above AT denotes a transpose of matrix A and A−1 denotes inverse
matrix to A. As can be seen, formulas (1.3) and (1.5) have been reduced to tractable
algebraic operations, computing inverse matrix7 being the most costly one.

7it can be shown that St|t−1 is positive definite given that Ct is full-ranked, therefore the inverse
in (1.12) exists.
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It should be further noted that the Kalman filter and described algorithm can be
easily enhanced to additionally cope with an intervention (or control) vector applied
to the system, making it suitable for the theory of decision-making. Numerous
generalisations of the Kalman filter exist, for example an extended Kalman filter
that relaxes the requirement of the linear system by locally approximating a non-
linear system with Taylor series. These are out of scope of this text, but provide
areas for subsequent consideration.

On the other hand, the assumption of Gaussian posterior probability density
function cannot be easily overcome and for systems that show out non-Gaussian
distributions of the state vector another approach have to be taken. [1] One such
approach can be a Monte Carlo-based particle filter presented in the next section.

1290 1300 1310 1320 1330 1340 1350 1360

−3

−2

−1

0

1

2

3

4

time steps

st
at

e 
ve

ct
or

 

 

x
0

x
1

Mu
0
 (matlab simple)

Mu
1
 (matlab simple)

Mu
oo

0

 (matlab OO)

Mu
oo

1

 (matlab OO)

Mu
py

0

 (PyBayes)

Mu
py

1

 (PyBayes)

xth2
0
 (C++)

xth2
1
 (C++)

xthE
0
 (C++)

xthE
1
 (C++)

Figure 1.1: Example run of the Kalman filter. Lines are actual (hidden) state, dots
estimation means of various implementations (all yielding the same values).

1.4 Particle Filter

Particle filters represent an approximate solution of the problem of the recursive
Bayesian estimation, thus can be considered suboptimal methods. The underlying
algorithm described below is most commonly named sequential importance sampling
(SIS). The biggest advantage of the particle filtering is that requirements posed on
the modelled system are much weaker than those assumed by optimal methods such
as the Kalman filter. Simple form of the particle filter presented in this section (that
assumes that modelled system has Markov property) requires only the knowledge
of probability density function p(xt|xt−1) representing the process model and the

6



knowledge of p(yt|xt) representing the observation model.8

The sequential importance sampling approximates the posterior density by a
weighted empirical probability density function (1.14).

p(xt|y1:t) ≈
N∑
i=1

ω
(i)
t δ(xt − x

(i)
t ) (1.14)

∀i ∈ N i ≤ N : ωi ≥ 0
N∑
i=1

ωi = 1

In (1.14) x(i)t denotes value of i-th particle: possible state of the system at time t;
ω
(i)
t signifies weight of i-th particle at time t: scalar value proportional to expected

probability of the system being in state in small neighbourhood of x(i)t ; N denotes
total number of particles9, a significant tunable parameter of the filter.

As the initial step of the described particle filter, N random particles are sampled
from the initial probability density function p(x0). Let i ∈ N i ≤ N , transition
t− 1 → t can be performed as follows:

1. for each i compute x(i)t by random sampling from conditional probability density
function p(xt|xt−1) where x(i)t−1 substitutes xt−1 in condition. This step can be
interpreted as a simulation of possible system state developments.

2. for each i compute weight ω(i)
t using (1.15) by taking observation yt into account.

xt is substituted by x
(i)
t in condition in (1.15). Simulated system states are

confronted with reality through observation.

ω
(i)
t = p(yt|xt)ω(i)

t−1 (1.15)

3. normalise weights according to (1.16) so that approximation of posterior proba-
bility density function integrates to one.

ω
(i)
t =

ω
(i)
t∑N

j=1 ω
(j)
t

(1.16)

Relative computational ease of described algorithm comes with cost: first, the
particle filter is in principle non-deterministic because of the random sampling in
step 1, in other words, the particle filter is essentially a Monte Carlo method; second,
appropriate number of particles N has to be chosen — too small N can lead to
significant approximation error while inadequately large N can make the particle
filter infeasibly time-consuming. It can be proved that the particle filter converges
to true posterior density as N approaches infinity and certain other assumptions
hold [4], therefore the number of particles should be chosen as a balance of accuracy
and speed.

8both probability density functions are generally time-varying and their knowledge for all t is
needed, but their representation (parametrised by conditioning variable) is frequently constant in
time in practical applications.

9N is assumed to be arbitrary but fixed positive integer for our uses. Variants of the particle
filter exist that use adaptive number of particles, these are not discussed here.
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Only two operations with probability density functions were needed: sampling
from p(xt|xt−1) and evaluating p(yt|xt) in known point. Sometimes sampling from
p(xt|xt−1) is not feasible10 and/or better results are expected by taking an observa-
tion yt into account during sampling (step 1). This can be achieved by introducing
so-called proposal density (sometimes importance density) q(xt|xt−1, yt). Sampling
in step 1 then uses q(xt|xt−1, yt) instead, where xt−1 in condition is substituted by
x
(i)
t−1. Weight computation in step 2 have to be replaced with (1.17) that compen-

sates different sampling distribution (every occurrence of xt, xt−1 in the mentioned
formula has to be substituted by x(i)t and x(i)t−1 respectively). See [1] for a derivation
of these formulas and for a discussion about choosing adequate proposal density.

ω
(i)
t =

p(yt|xt)p(xt|xt−1)
q(xt|xt−1, yt)

ω
(i)
t−1 (1.17)

Particle filters also suffer from a phenomenon known as sample impoverishment
or degeneracy problem: after a few iterations all but one particles’ weight falls close
to zero.11 One technique to diminish this is based on careful choice of proposal
density (as explained in [1]), a second one is to add additional resample step to the
above algorithm:

4. for each i resample x(i)t from approximate posterior probability density function∑N
i=1 ω

(i)
t δ(xt − x

(i)
t ) and reset all weights to 1

N
. Given that sampling is truly

random and independent this means that each particle is in average copied ni

times, where ni is roughly proportional to particle weight: ni ≈ ω
(i)
t N . Statistics

of posterior probability density function are therefore (roughly and on average)
maintained while low-weight particles are eliminated.

Step 4 therefore facilitates avoidance of particles with negligible weight by replacing
them with more weighted ones. Such enhanced algorithm is known as sequential
importance resampling (SIR).

Because particle resampling is computationally expensive operation, a technique
can be used where resampling is skipped in some iterations, based on the following
idea: a measurement of degeneracy can be obtained by computing an approximate
of effective sample size Neff at given time t using (1.18). [1]

Neff ≈

(
N∑
i=1

(
ω
(i)
t

)2)−1
(1.18)

Very small Neff compared to N signifies a substantial loss of “active” particles, which
is certainly undesirable as it hurts accuracy while leaving computational demands
unchanged. Step 4 is then performed only when Neff falls below certain threshold.

Recursive Bayesian estimation using SIR methods can be applied to a wide range
of dynamic systems (even to those where more specialised methods fail) and can be
tuned with number of particles N and proposal density q. On the other hand a
method specially designed for a given system easily outperforms general particle
filter in terms of speed and accuracy.

10but can be replaced by evaluation in known point.
11it has been shown that variance of particle weights continually raises as algorithm progresses. [1]
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1.5 Marginalized Particle Filter

Main sources of this section are [12] and [13].

The marginalized particle filter (sometimes Rao-Blackwellized particle filter) is
an extension to the particle filter that more accurately approximates the optimal
Bayesian solution provided that the probability density function representing the
process model p(xt|xt−1) can be obtained in a special form. Suppose that the state
vector can be divided into two parts at and bt (1.19) and that the process model
probability density function can be expressed as a product of two probability density
functions (1.20), where p(at|at−1bt) is analytically tractable (in general). We present
a simple variant of the marginalized particle filter where, given bt, process and
observation model of the at part are linear with normally-distributed noise. The
Kalman filter can be used to estimate at part of the state vector in this case.

xt = (at, bt) (1.19)
p(xt|xt−1) = p(at, bt|at−1, bt−1) = p(at|at−1, bt)p(bt|bt−1) (1.20)

The posterior probability density function (1.21) can be represented as a product
of a weighted empirical distribution and a normal distribution. Each (i-th) particle
is thus associated with its Kalman filter (representing a(i)t part) and b(i)t quantity.

p(at, bt|yt) =
N∑
i=1

ωip(at|y1:t, b(i)1:t) δ(bt − b
(i)
t ) (1.21)

In (1.21) N denotes the total number of particles, ωi denotes weight of i-th
particle, p(at|y1:t, b(i)1:t) is posterior probability density function of i-th Kalman filter
and b(i)t is a value of the bt part of i-th particle.

The algorithm of the described variant of the marginalized particle filter follows,
note the similarities with the ordinary particle filter: at first, generate N bt random
samples from the initial distribution p(b0). Then the following procedure can be
repeated for each measurement yt:

1. for each i compute b(i)t by random sampling from conditional probability density
function p(bt|bt−1) where b(i)t−1 substitutes bt−1 in condition.

2. for each i compute the posterior probability density function p(at|y1:t, b(i)1:t) of the
i-th Kalman filter using yt and b

(i)
t .

3. for each i update weight ωi using the formula (1.22) where marginal likelihood
of the i-th Kalman filter (1.11) is used.

ωi = p(yt|y1:t−1, b(i)1:t) ωi (1.22)

4. normalise weights (as described in the previous section).
5. resample particles (as described in the previous section).

It has been demonstrated in various publications that the marginalised particle
filter outperforms the ordinary particle filter in both better accuracy and lower com-
putational demands. Where applicable, it therefore forms an excellent alternative
to traditional particle filtering.
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Chapter 2

Software Analysis

In this chapter, general software development approaches and practices will be
confronted with requirements posed on the desired software library for recursive
Bayesian estimation. After stating these requirements, feasibility of various pro-
gramming paradigms applied to our real-world problem is discussed. Continues a
comparison of suitable features of 3 chosen programming languages: C++, MAT-
LAB language and Python. Emphasis is put on the Python/Cython combination
that was chosen for implementation.

In whole chapter, the term user refers to someone (a programmer) who uses
the library in order to implement higher-level functionality (such as simulation of
dynamic systems).

2.1 Requirements

Our intended audience is a broad scientific community interested in the field of the
recursive Bayesian estimation and decision-making. Keeping this in mind and in
order to formalise expectations for the desired library for Bayesian filtering, the
following set of requirements was developed.

Functionality:

• Framework for working with potentially conditional probability density functions
should be implemented including support for basic operations such as product
and chain rule. The chain rule implementation should be flexible in a way that for
example p(at, bt|at−1, bt−1) = p(at|at−1, bt)p(bt|bt−1) product can be represented.
• Basic Bayesian filtering methods such as the Kalman and particle filter have to

be present, plus at least one of more specialised algorithms — a marginalized
particle filter or non-linear Kalman filter variants.

General:

• Up-to-date, complete and readable API1 documentation is required. Such docu-
1Application Programming Interface, a set of rules that define how a particular library is used.
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mentation should be well understandable by someone that already understands
mathematical background of the particular algorithm.
• High level of interoperability is needed; data input/output should be straightfor-

ward as well as using existing solutions for accompanying tasks such as visualising
the results.
• The library should be platform-neutral and have to run on major server and

workstation platforms, at least on Microsoft Windows and GNU/Linux.
• The library should be Free/Open-source software as it is believed by the authors

that such licensing/development model results in software of greatest quality in
long term. Framework used by the library should make it easy to adapt and
extend the library for various needs.

Usability:

• Initial barriers for installing and setting up the library should be lowest possible.
For example a necessity to install third-party libraries from sources is considered
infeasible.
• Implementation environment used for the library should allow for high program-

mer productivity; prototyping new solutions should be a quick and cheap (in
terms of effort) operation. This requirement effectively biases towards higher-
level programming languages.

Performance:

• Computational overhead2 should be kept reasonably low.
• Applications built atop of the library should be able to scale well on multi-

processor systems. This can be achieved for example by thread-safety of critical
library objects or by explicit parallelisation provided by the library.

It is evident that some of the requirements are antagonistic, most prominent
example being demand for low computational overhead while still offering high pro-
grammer productivity and rapid prototyping. The task of finding tradeoffs between
contradictory tendencies or developing smart solutions that work around traditional
limitations is left upon the implementations.

2.2 Programming paradigms

Many programming paradigms exist and each programming language usually sug-
gests a particular paradigm, though many languages let programmers choose from
or combine multiple paradigms. This section discusses how well could be three most
prominent paradigms (procedural, object-oriented and functional) applied to the
software library for Bayesian filtering. Later on additional features of implementa-
tion environments such as interpreted vs. compiled approach or argument passing
convention are evaluated.

2excess computational costs not directly involved in solving particular problem; for example
interpreter overhead.
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2.2.1 Procedural paradigm

The procedural paradigm is the traditional approach that appeared along the first
high-level programming languages. The procedural programming can be viewed as
a structured variant of imperative programming, where programmer specifies steps
(in form of orders) needed to reach desired program state. Structured approach
that emphasizes dividing the code into logical and self-contained blocks (procedures,
modules) is used to make the code more reusable, extensible and modular. Today’s
most notable procedural languages include C and Fortran.

Most procedural languages are associated with very low overhead (performance of
programs compiled using optimising compiler tend to be very close to ideal programs
written in assembly code); mentioned languages are also spread and well-known in
scientific computing.

On the other hand, while possible, it is considered an elaborate task by the author
to write a modular and extensible library in these languages. Another disadvantage
is that usually only very basic building blocks are provided by the language — struc-
tures like lists and strings have to be supplied by the programmer or a third-party
library. This only adds to the fact that the procedural paradigm-oriented languages
are commonly not easy to learn and that programmer productivity associated with
these languages may be much lower compared to more high-level languages.

2.2.2 Object-oriented paradigm

The object-oriented paradigm extends the procedural approach with the idea of ob-
jects — structures with procedures (called methods) and variables (called attributes)
bound to them. Other feature frequently offered is polymorphism (an extension to
language’s type system that adds the notion of subtypes and a rule that subtype of
a given type can be used everywhere where given type can be used) most often fa-
cilitated through a concept of classes, common models for sets of objects with same
behaviour but different payload; objects are then said to be instances of classes. A
subclass inherits methods and attributes from its superclass and can override them
or add its own. Encapsulation, a language mechanism to restrict access to certain
object attributes and methods, may be employed by the language to increase robust-
ness by hiding implementation details. In order to be considered object-oriented,
statically typed languages (p. 14) should provide dynamic dispatch3, en essential
complement to polymorphism, for certain or all object methods.

Notable examples of languages that support (although not exclusively) object-
oriented paradigm are statically typed C++, Java and dynamically typed (p. 14)
MATLAB language, Python, Smalltalk.

Object-oriented features typically have very small overhead compared to proce-
dural code with equal functionality, so additional complexity introduced is the only
downside, in author’s opinion. We believe that these disadvantages are greatly out-

3a way of calling methods where the exact method to call is resolved at runtime based on actual
(dynamic) object type (in contrast to static object type).
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weighed by powerful features that object-oriented languages provide (when utilised
properly).

It was also determined that the desired library for Bayesian filtering could benefit
from many object-oriented techniques: probability density function and its condi-
tional variant could be easily modelled as classes with abstract methods that would
represent common operation such as evaluation in a given point or drawing random
samples. Classes representing particular probability density functions would then
subclass abstract base classes and implement appropriate methods while adding rel-
evant attributes such as border points for uniform distribution. This would allow
for example to create generic form of particle filter (p. 6) that would accept any
conditional probability density function as a parameter. Bayesian filter itself can be
abstracted into a class that would provide a method to compute posterior probability
density function from prior one taking observation as a parameter.

2.2.3 Functional paradigm

Fundamental idea of the functional programming is that functions have no side
effects — their result does not change or depend on program state, only on sup-
plied parameters. A language where each function has mentioned attribute is called
purely functional whereas the same adjective is applied to such functions in other
languages. This is often accompanied by a principle that all data are immutable
(apart from basic list-like container type) and that functions are so-called “first-class
citizens” — they can be passed to a function and returned. Placing a restriction of
no side-effect on functions allows compiler/interpreter to do various transformations:
parallelisation of function calls whose parameters don’t depend on each other’s re-
sults, skipping function calls where the result is unused, caching return values for
particular parameters.

Among languages specially designed for functional programming are: Haskell,
Lisp dialects Scheme and Clojure, Erlang. Python supports many functional pro-
gramming techniques4.

While functional programming is popular subject of academic research, its use is
much less widespread compared to procedural and object-oriented paradigms. Ad-
ditionally, in the author’s opinion, transition to functional programming requires
significant change of programmer’s mindset. Combined with the fact that syntax of
the mentioned functionally-oriented languages differs significantly from many pop-
ular procedural or object-oriented languages, we believe that it would be unsuitable
decision for a library that aims for wide adoption.

2.2.4 Other programming language considerations

Apart from recently discussed general approaches to programming, we should note
a few other attributes of languages or their implementations that significantly affect

4e.g. functions as first-class citizens, closures, list comprehensions
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software written using them. The first distinction is based on type system of a
language — we may divide them into 2 major groups:

statically typed languages
bind object types to variables ; vast majority of type-checking is done at compile-
time. This means that each variable can be assigned only values of given type
(subject to polymorphism); most such languages require that variable (function
parameter, object attribute) types are properly declared.

dynamically typed languages
bind object types to values ; vast majority of type-checking is done at runtime.
Programmer can assign and reassign objects of arbitrary types to given variable.
Variables (and object attributes) are usually declared by assignment.

We consider dynamically typed languages more convenient for programmers — we’re
convinced that the possibility of sensible variable reuse and lack of need to declare
variable types lets the programmer focus more on the actual task, especially during
prototyping stage. This convenience however comes with a cost: dynamic typing
imposes inevitable computing overhead as method calls and attribute accesses must
be resolved at runtime. Additionally, compiling a program written in statically
typed language can reveal many simple programming errors such as calling mistyped
methods, even in unreachable code-paths; this is not the case for dynamically-typed
languages and we suggest compensating this with more thorough test-suite (code
coverage tools can greatly help with creating proper test-suite, see section 3.3 on
page 41).

Another related property is interpreted vs. compiled nature; we should em-
phasize that this property refers to language implementation, not directly to the
language itself, e.g. C language is commonly regarded as compiled one, several
C interpreters however exist. We use the term “language is compiled/interpreted”
to denote that principal implementation of that language is compiled, respectively
interpreted.

compiled implementations
translate source code directly into machine code suitable for given target pro-
cessor. Their advantage is zero interpreter overhead. Developers are required to
install a compiler (and perhaps a build system) or an IDE5 used by given project
(library) to be able to modify it. Write-build-run-debug cycle is usually longer
in comparison to interpreted implementations.

interpreted implementations
either directly execute commands in source code or, more frequently, translate
source code into platform-independent intermediate representation which is af-
terwards executed in a virtual machine. We may allow the translate and execute
steps to be separated so that Java and similar languages can be included. Advan-
tages include usually shorter write-run-debug cycle that speeds up development
and portable distribution options. Interpreted languages have been historically
associated with considerable processing overhead, but just-in-time compilation6

5Integrated Development Environment
6interpreter feature that translates portions of bytecode into machine code at runtime.
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along with adaptive optimisation7 present in modern interpreters can minimise or
even reverse interpreter overhead: Paul Buchheit have shown8 that second and
onward iterations of fractal-generating Java program were actually 5% faster
than equivalent C program. We have reproduced the test with following results:
Java program was 10% slower (for second and subsequent iterations) than C pro-
gram and 1600% slower when just-in-time compilation was disabled. Complete
test environment along with instructions how to reproduce it be found in the
examples/benchmark_c_java directory in the PyBayes source code repository.

There exists a historic link between statically typed and compiled languages, respec-
tively dynamically typed and interpreted languages. Java which is itself statically
typed and it’s major implementation is interpreted and Erlang’s (which is dynami-
cally typed) compiled HiPE9 implementation are some examples of languages that
break the rule. We believe that this historic link is the source of a common mis-
conception that interpreted languages are inherently slow. Our findings (see also
Python/Cython/C benchmark on p. 25) indicate that the source of heavy overhead
is likely to be the dynamic type system rather than overhead of modern just-in-time
interpreters. In accordance with these findings, we may conclude that choice of lan-
guage implementation type should rather be based on development and distribution
convenience than on expected performance.

Each programming language may support one or more following function call
conventions that determine how function parameters are passed:

call-by-value convention
ensures that called function does not change variables passed as parameters from
calling function by copying them at function call time. This provides clear se-
mantics but incurs computational and memory overhead, especially when large
data structures are used as parameters. As a form of optimisation, some lan-
guage implementations may employ copy-on-write technique so that variables
are copied only when they are mutated from within called function, thus saving
space and time when some parameters are only read from.

call-by-reference convention
hands fully-privileged references to parameters to called function. These refer-
ences can be used to modify or assign to parameters within called function and
these changes are visible to calling function. This approach minimises function
call overhead but may appear confusing to a programmer when local variable is
changed “behind her back" unexpectedly. On the other hand, call-by-reference
allows for programming techniques impossible with call-by-value alone (e.g. a
function that swaps two values).

call-by-object (call-by-sharing) convention
can be viewed as a compromise between call-by-value and call-by-reference: pa-
rameters are passed as references that can be used to modify referred objects
(unless marked immutable), but cannot be used to assign to referred objects (or

7a technique to use profiling data from recent past (collected perhaps when relevant portion of
code was run in interpreted mode) to optimise just-in-time compiled code.

8http://paulbuchheit.blogspot.com/2007/06/java-is-faster-than-c.html
9The High-Performance Erlang Project: http://www.it.uu.se/research/group/hipe/
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this assignment is invisible to calling function). When an object is marked as im-
mutable, passing this object behaves like call-by-value call without copying over-
head (in the calling function point of view). Java and Python use call-by-object
as their sole function calling method10 and both mark certain elementary types
(most prominently numbers and strings) as immutable. C’s pointer-to-const and
C++’s reference-to-const parameters can be viewed as call-by-object methods
where referred objects are marked as immutable in called function scope.

We suggest that a language that supports at least one of call-by-reference or call-
by-object conventions is used for the desired recursive Bayesian estimation library;
while call-by-value-only languages can be simpler to implement, we are convinced
that they impose unnecessary restrictions on the library design and cause overhead
in places where it could be avoided.

Last discussed aspect of programming languages relates to memory management:

garbage-collected languages
provide memory management in the language itself. This fact considerably sim-
plifies programming as programmer doesn’t need to reclaim unused memory re-
sources herself. Another advantage is that automatic memory management pre-
vents most occurrences of several programming errors: memory leaks,11 dangling
pointers12 and double-frees.13 Two major approaches to garbage collection exist
and both incur runtime computational or memory overhead. Tracing garbage col-
lector repeatedly scans program heap14 memory for objects with no references to
them, then reclaims memory used by these objects. Program performance may
be substantially impacted while tracings garbage collector performs its scan; fur-
thermore the moment when garbage collector fires may be unpredictable. Refer-
ence counting memory management works by embedding an attribute, reference
count, to each object that could be allocated on heap and then using this at-
tribute to track number of references to given object. When reference count
falls to zero, the object can be destroyed. Reference counting adds small mem-
ory overhead per each object allocated and potentially significant computational
overhead as reference counts have to be kept up-to-date. However, techniques
exist that minimise this overhead, for example those mentioned in [9].

non garbage-collected languages
put the burden of memory management on shoulders of the programmer: she
is responsible for correctly reclaiming resources when they are no longer in use.
The advantages are clear: no overhead due to memory management, probably
also smaller complexity of language implementation. However, as mentioned
earlier, languages without automatic memory management make certain classes
of programmer errors more likely to occur.

10python case: http://effbot.org/zone/call-by-object.htm
11an error condition when a region of memory is no longer used, but not reclaimed.
12a pointer to an object that has been already destroyed; such pointers are highly error-prone.
13an error condition where a single region of memory is reclaimed twice; memory corruption

frequently occurs in this case.
14an area of memory used for dynamic memory allocation.
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In our view, convenience of garbage-collected languages outweighs overhead they
bring for a project like a library for recursive Bayesian estimation targeting wide
adoption. We also believe that automatic memory management can simplify library
design and its usage as there is no need to specify who is responsible for destroying
involved objects on the library side and no need to think about it at the user side.

2.3 C++

C++ is regarded as one of the most popular programming languages today, along
with Java and C;15 it combines properties of both low-level and high-level languages,
sometimes being described as intermediate-level language. C++ extensively sup-
ports both procedural and class-based object-oriented paradigm, forming a multi-
paradigm language; generic programming is implemented by means of templates,
which allow classes and functions to operate on arbitrary data types while still be-
ing type-safe. C++ is statically-typed, all major implementations are compiled,
supports call-by-value (the default), call-by-reference and a variant of call-by-object
function call conventions. C++ lacks implicit garbage collection for heap-allocated
data — the programmer must reclaim memory used by those objects manually; use
of smart pointers16 may although help with this task. C++ is almost 100% compat-
ible with the C language in a way that most C programs compile and run fine then
compiled as C++ programs. C++ also makes it easy to use C libraries without a
need to recompile them. [16]

When used as an implementation language for the desired library for recursive
Bayesian estimation, we have identified potential advantages of the C++ language:

low overhead
C++ was designed to incur minimal overhead possible. In all benchmarks we’ve
seen (e.g. The Computer Language Benchmarks Game17), it is hard to out-
perform C++ by a significant margin (Fortran and assembly code would be
candidates for that).

widespread
C/C++ code forms large part of the software ecosystem. Thanks to that, incred-
ible number of both proprietary and free IDEs, debuggers, profilers and other
related coding tools is available. This fact makes development more convenient.

libraries
Thanks to C++ popularity, several high-quality libraries for numerical calcu-
lations/computer algebra are available, many of them are free software or free
to use. These are for example C interfaces to BLAS18 and LAPACK19 (both

15TIOBE Programming Community Index for July 2011: http://www.tiobe.com/index.php/
content/paperinfo/tpci/index.html

16a template class that behaves like a pointer through use of operator overloading but adds
additional memory management features such as reference counting

17http://shootout.alioth.debian.org/
18Basic Linear Algebra Subprograms: http://www.netlib.org/blas/
19Linear Algebra PACKage: http://www.netlib.org/lapack/
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low-level and fixed function), higher-level IT++20 built atop of BLAS/LAPACK
or independent template-based library Eigen.21 Additionally, OpenMP22 can be
used to parallelise existing algorithms without rewriting them.

However, using C++ would, in our opinion, bring following major drawbacks:

diversity
While there are many C/C++ libraries for specific tasks (such as data visuali-
sation), it may prove difficult in our opinion to combine them freely as there are
no de facto standard data types for e.g. vectors and matrices — many libraries
use their own.

learning curve
C++ takes longer to learn and even when mastered, programmer productivity
is subjectively lower compared to very high-level languages. We also fear that
many members of out intended audience are simply unwilling to learn or use
C++.

Moreover, discussion about statically-typed, compiled and non-garbage-collected
languages from previous section also apply. Due to this, we have decided not to
use C++ if an alternative with reasonable overhead is found.

Several object-oriented C++ libraries for recursive Bayesian estimation exist:
Bayes++23, BDM [19] and BFL [5]. BDM library is later used to compare perfor-
mance of Cython, C++ and MATLAB implementations of the Kalman filter, see
section 3.4 on page 43.

2.4 MATLAB language

MATLAB language is a very high-level language used exclusively by the MAT-
LAB24 environment, a proprietary platform developed by MathWorks.25 MATLAB
language extensively supports procedural programming paradigm and since version
7.6 (R2008a) class-based object oriented paradigm is also fully supported.26 MAT-
LAB language is dynamically-typed, interpreted language with automatic memory
management.

MATLAB language possesses, in our belief, following favourable attributes when
used to implement the desired library for Bayesian filtering:

popularity among academia
While MATLAB language is not as widespread as C++ on the global scale, it is
very popular in scientific community, our intended audience.

performance
20http://itpp.sourceforge.net/
21http://eigen.tuxfamily.org/
22The OpenMP API specification for parallel programming: http://openmp.org/
23http://bayesclasses.sourceforge.net/
24http://www.mathworks.com/products/matlab/
25http://www.mathworks.com/
26http://www.mathworks.com/products/matlab/whatsnew.html
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MATLAB language is very well optimised for numerical computing.
wide range of extensions

High number of well integrated extension modules (toolboxes) is bundled with
MATLAB or available from third parties. This makes associated tasks such as
data visualisation particularly straightforward.

rapid development
Being a very high-level language, we expect programmer productivity in the
MATLAB language being fairly high. MATLAB environment is itself a good
IDE and its interactive shell fosters rapid prototyping.

Following disadvantages of the MATLAB language were identified:

vendor lock-in
MATLAB is commercial software; free alternatives such as GNUOctave27, Scilab28
or FreeMat29 exist, however all of them provide only limited compatibility with
the MATLAB language. Developing for a non-standard proprietary platform
always imposes risks of the vendor changing license or pricing policy etc.

problematic object model
We have identified in subsection 2.2.2 that object-oriented approach is important
for a well-designed and usable library for Bayesian filtering. Nonetheless MAT-
LAB’s implementation of object-oriented programming is viewed as problematic
by many, including us. For example, function call parameter passing convention
is determined by the object class/data type — MATLAB distinguishes value
classes that have call-by-value semantics and handle classes that have call-by-
object semantics.30 The resulting effect is that calling identical function with
otherwise equivalent value and handle classes can yield very different behaviour.

hard-coded call-by-value semantics
2D array, a very central data-type of the MATLAB language, has call-by-value
function call convention hard-coded; this results in potentially substantial func-
tion call overhead. Although current MATLAB versions try to minimise copy-
ing by employing copy-on-write technique31 or performing some operations in-
place,32 our tests have shown that even combining these techniques doesn’t elim-
inate unnecessary copying overhead which we believe is the main source of grave
performance regression of object-oriented code with regards to imperative code;
see section 3.4 on page 43.

We consider presented drawbacks significant and therefore decided not to use the
MATLAB language for the desired Bayesian filtering library. BDM library [19]
contains both object oriented and imperative implementation of the Kalman filter in
the MATLAB language; these are compared with our implementation in section 3.4.

27http://www.gnu.org/software/octave/
28http://www.scilab.org/
29http://freemat.sourceforge.net/
30call-by-object semantics tested in version 7.11 (R2010b).
31http://blogs.mathworks.com/loren/2006/05/10/memory-management-for-functions-

and-variables/
32http://blogs.mathworks.com/loren/2007/03/22/in-place-operations-on-data/
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2.5 Python

Python33 is a very high level programming language designed for outstanding code
readability and high programmer productivity actively developed by the Python
Software Foundation.34 Python extensively supports procedural and class-based
object-oriented programming paradigms and some features of the functional pro-
gramming. Python is dynamically-typed language with automatic memory manage-
ment that exclusively employs call-by-object function call parameter passing con-
vention; elementary numeric types, strings and tuples are immutable35 so that this
approach doesn’t become inconvenient.

Principal Python implementation, CPython, is written in C, is cross-platform
and of interpreted type: it translates Python code into bytecode which is subse-
quently executed in a virtual machine. Many alternative implementations are avail-
able, to name a few: Jython36 that translates Python code into Java bytecode (itself
written in Java), IronPython37 itself implemented on top of the .NET Framework,
just-in-time compiling PyPy38 written in Python itself or Cython which is described
in greater detail in the next section. All the mentioned implementations qualify as
free/open-source software.

Python language is bundled with a comprehensive standard library so that writ-
ing new projects is quick from the beginning. Two major Python versions exists:
Python 2, considered legacy and receiving only bugfix updates, and Python 3, ac-
tively developed and endorsed version that brings a few incompatible changes to the
language syntax and to the standard library. Porting Python 2 code to version 3 is
however usually straightforward and can be automated to a great extent with tools
bundled with Python 3.

In our belief, Python shows following favourable attributes when used for the
desired Bayesian filtering library:

development convenience, readability, rapid prototyping
Python developers claim that Python in an easy to learn, powerful program-
ming language and our experience confirms their claims. Python code is easy
to prototype, understand and modify in our opinion; prototyping is with bun-
dled interactive Python shell. While all these statements are subjective, they
are shared among many.39 For example a statement x <= y <= z has its math-
ematical meaning, which is unusual for programming languages.

NumPy, SciPy, Matplotlib
NumPy project40 is the de facto standard Python library for numeric computing;
NumPy provides N-dimensional array type that is massively supported in very

33http://www.python.org/
34http://www.python.org/psf/
35http://docs.python.org/reference/datamodel.html
36http://www.jython.org/
37http://ironpython.net/
38http://pypy.org/
39http://python.org/about/quotes/
40http://www.numpy.org/
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high number of projects. Parts of NumPy are written in C and Cython for speed.
SciPy41 extends NumPy with more numerical routines. Matplotlib42 is powerful
plotting library that natively supports SVG output. Combining these three and
Python gives a very vital MATLAB alternative.

interoperability with C
CPython makes it possible to write modules43 in C44 (that are then called ex-
tension modules). Cython makes it easy and convenient to write extension mod-
ules. Sadly, alternative implementations PyPy, Jython and IronPython don’t
currently fully support extension modules and are therefore ruled-out for our
purposes because they in turn don’t support NumPy.45

interoperability with MATLAB
SciPy contains procedures to load and save data in MATLAB .mat format; Mat-
plotlib includes programming interface that resembles MATLAB’s plotting pro-
cedures.

On the other hand, a few downsides exist:

overhead
CPython implementation shows significant computational overhead, especially
for numerical computations; CPython doesn’t currently utilise any form of just-
in-time compiling. NumPy is often used to trade off computational overhead
for memory overhead: The Computer Language Benchmarks Game46 contains
an example where a program heavily using NumPy is 20× faster but consumes
12× more memory than a program that performed the same task and used
solely the Python standard library. We have reproduced the benchmark with
similar results; mentioned programs can me found in the examples/benchmark_
py_numpy directory in the PyBayes source code repository. We still consider this
workaround suboptimal.

peculiar parallelisation
While Python natively supports threads and they are useful for tasks such as
background I/O operations, Python threads don’t scale on multiprocessor sys-
tems for CPU-bound processing; such code often runs at single-processor speed
(when run in CPython). The reason behind that is that CPython employs a
global-interpreter-lock (GIL) to to assure that only one thread executes Python
bytecode at a time.47 This restriction can be worked around by using multiple
python interpreters that communicate with each other; Python module multi-
processing makes it almost as convenient as using threads.

Python compares favourably to other implementation environments presented before
in our view; sole major obstacle being excessive overhead of the CPython interpreter.

41http://www.scipy.org/
42http://matplotlib.sourceforge.net/
43module in python sense is a code unit with its own namespace, normally each module corre-

sponds to a .py file.
44http://docs.python.org/extending/index.html
45PyPy and IronPython are nonetheless interesting for future consideration as both have NumPy

support actively worked on.
46http://shootout.alioth.debian.org/
47http://docs.python.org/glossary.html
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It is discussed how this issue can be solved using Cython in the next section.

We haven’t found any Python library for recursive Bayesian estimation that
would fulfil the requirements presented at the beginning of this chapter.

2.6 Cython

Cython [2] is both an extension to the Python language and an implementation of
it (a compiler). Cython works by translating Cython modules (.pyx or .py files)
into the C language which is then compiled to form binary Python extension mod-
ules (dynamically loaded libraries — .dll files on Windows and .so files on UNIX
platforms). Cython aims to be a strict superset of Python in a way that a valid
Python module is also a valid Cython module that behaves equally. Current de-
velopment snapshot of Cython virtually achieves this goal as it successfully passes
97.6% of the Python 2.7.1 regression test suite. Additionally, interpreted Python
modules and Cython-compiled modules can be mixed and interchanged freely as
Cython-compiled code can transparently interact with interpreted Python code and
vice-versa. However, Cython is not a replacement of CPython — Cython-compiled
modules need to be executed by CPython because they make heavy use of CPython
internals written in C (C code emitted by the Cython compiler is largely composed
of calls to functions from CPython C API); Cython-compiled modules merely cir-
cumvent the virtual machine (bytecode interpreter) part of CPython, thus virtually
eliminating interpreter overhead. This is in fact probably the most serious limita-
tion of Cython — it is tightly bound to one specific (although the most prevalent)
Python implementation, CPython.

Another key feature Cython supports is static typing of variables, function pa-
rameters and object attributes. In addition, Cython allows statically typed variables
to be native C types such as int, char * or struct sockaddr in addition to Python
types; automatic conversion on Python/C boundary is provided by Cython for C
types with Python equivalents, C double is wrapped as Python float and C long
is wrapped as Python int for example. The main purpose of static typing are im-
pressive speed gains; an extreme case exploited by our test case showed 65× speed
increase of typed Cython code compared to untyped Cython code. In important
thing to mention is that static typing is completely voluntary for the programmer;
recent Cython versions also support experimental basic type inference48 (that is
guaranteed not to change semantics). Simply put, static typing prevents significant
overhead caused by highly dynamic nature of Python.

2.6.1 Cython Features

We continue by a brief technical description of some Cython extensions to Python
and other features so that Cython’s benefits can be evaluated as a whole later. Unless
noted otherwise, Cython version 0.14.1 is described here; please note that Cython

48a way to guess and prove type of certain variable using code analysis
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is a rapidly evolving project and some of the mentioned features or limitations may
well change in future versions.

cdef variables
Cython supports so-called cdef variables in both global (module) scope and func-
tion (method) scope that can be typed; in addition to Python types, they can
also have native C types. Cdef variables aren’t visible to Python code, but some
overhead is eliminated as they are, for example, not reference-counted.

cdef and cpdef functions
In addition to traditional Python functions (def function(x) in code) that
use rather expensive calling convention (e.g. all their positional arguments are
packed into a tuple and all their keyword arguments are packed into a dictio-
nary on each call) Cython supports so-called cdef functions and cpdef functions.
Cdef functions (defined as cdef function(x), hence the name) use native C
calling convention and are only callable from Cython code, with greatly reduced
overhead; their return value can be typed (parameters can be typed even for tra-
ditional Python functions). Cpdef functions (defined as cpdef function(x))
are same as cdef functions but in addition a Python wrapper around the C func-
tion with the same name is generated; such function is callable from Python
(with overhead) and fast to call from Cython, cpdef functions therefore com-
bine the benefits of both. Neither cdef or cpdef functions can be Python class
methods, but see the next entry.

extension types (cdef classes)
In addition to traditional Python classes marked as (2.1) in code that store their
attributes and methods in a class dictionary, which leads to inefficient attribute
lookups and method calls, Cython supports so-called cdef classes (or extension
types) that are defined using (2.2) and use C structs to store their attributes and
method table, a significantly faster approach than Python dictionary.

class ClassName(SuperClass) : (2.1)
cdef class ClassName(SuperClass) : (2.2)

Cdef classes can also have cdef and cpdef methods as their members; they can also
contain cdef variables as attributes with optional additional modifiers public
(read-write from Python) or readonly (read-only from Python). Cdef classes
are, in contrast to similarly named cdef functions, visible to Python code where
they appear as built-in types. Compared to traditional Python classes, cdef
classes are however subject to 2 major limitations: all their attributes have
to be statically declared (as opposed to dynamically created at runtime) plus
multiple inheritance cannot be used. One can overcome both these limitations
by subclassing them in Python, which is indeed possible.

interfacing C/C++ code
As described in [3], Cython can be used to conveniently call C or C++49 library
functions. Suppose we want to call the sin() function form the C standard
library that is defined in math.h. Following Cython module accomplishes that:

49C code emitted by the Cython compiler is compilable also when treated as C++, thus allows
interfacing with C++ code.
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sin_wrapper.pyx
cdef extern from math.h:

double sin(double x)

sin(0.123) # call C function directly from Cython

cpdef double sin_wrapper(double x):
return sin(x)

In the example above, the sin_wrapper() function can be called from Python
code. Cython is therefore an excellent tool to create Python wrappers around
C/C++ libraries or use them directly.

NumPy support
As was noted above, many core parts of NumPy are written in C (or Cython),
including the crucial data-type, N-dimensional array. Cython provides explicit
support for NumPy data-types and core array-manipulation methods and func-
tions allowing the programmer to take advantage of the speed gains of both. [14]
On the other hand, NumPy support in Cython (or Cython support in NumPy)
is far from complete, for example matrix multiplication, linear system solving
and matrix decomposition functions are usually speeded up using C (and BLAS,
LAPACK) internally, but to our knowledge it is presently impossible to call
these functions from Cython without Python overhead (the overhead is however
significant only for small matrix sizes).

pure Python mode
It is clear that in order to make use of all important features of Cython, one has
to use syntax that is no longer valid Python code; this can be disadvantageous
in many cases. To combat this, Cython offers so-called pure Python mode where
Cython-specific syntax is wrapped in Python constructs, e.g. (2.3) can be al-
ternatively formulated as (2.4) — such constructs are implemented by Cython
shadow code to be no-ops when interpreted by Python and treated accordingly
when compiled by Cython.

cdef int i (2.3)
x = cython.declare(cython.int) (2.4)

Another variant of pure Python mode is to use so-called augmenting files, .pxd
files that accompany equally-named .py files. Such augmenting file can contain
declarations of variables, functions and classes that appear in associated .py files
and add Cython-specific features to them. For example, suppose that it is desired
to have a function that is inexpensive to call from Cython but still providing full
Python compatibility, one can write following Python module:

module.py
def f(x):

return x*x

And associated augmenting file:
module.pxd

cdef double f(double x)
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It is forbidden to provide implementation in .pxd files. This alternative approach
is advantageous to the first one because it doesn’t require Cython to be installed
on a target machine (on the other hand, some very special Cython features
currently cannot be expressed in augmenting files). .pxd files also serve for
sharing declarations between Cython modules in a way similar to C header (.h)
files.50

parallelisation
One recent feature of current development snapshots of Cython is a native sup-
port for C-level parallelisation through OpenMP51 —Cython adds new prange()
function that is similar to the Python range() function except that loop state-
ments are executed in parallel. Currently only loops whose statements can be
called without holding the GIL52 can be efficiently parallelised. Our tests have
shown that such parallel loops scale well with the number of processors, see
subsection 2.6.2 on page 25.

Python 3 compatibility
Cython provides full compatibility with Python 3 in particularly robust way:
Cython modules can be written in both Python 2 or Python 3 and C files that
Cython produces can be compiled against both CPython 2 or CPython 3, inde-
pendently from the source file version.53 This effectively makes Cython a 2-way
compatibility bridge between Python 2 and Python 3.

There are many areas where Cython can get better, however most of them are
just missed optimisation possibilities. We mention 2 major cases where Cython
currently doesn’t accept valid Python constructs: the yield statement54 used to
create generator functions is currently unsupported and generator expressions55 are
supported only in special cases. Other minor inconveniences exist but we don’t
consider them worth discussing here. Another important attribute of Cython is,
in our belief, its active developer community, for example we’ve discovered a bug
related to Cython’s pure Python mode capability that was fixed upon providing a
test-case.56

2.6.2 Performance comparison with C and Python

In order to evaluate performance of Cython, we’ve conducted a benchmark where
equivalent Python, Cython-compiled Python, Cython and C programs are com-
pared. Inspired by the Cython tutorial, the test program performs simple numerical
integration of the function x2 from 0 to 3. Python version of the test program is
shown here, complete test environment along with instructions how to reproduce
can be found in the examples/benchmark_c_cy_py directory in the PyBayes source
code repository.

50http://docs.cython.org/src/userguide/sharing_declarations.html
51The OpenMP API specification for parallel programming: http://openmp.org/
52global-interpreter lock http://docs.python.org/glossary.html
53http://wiki.cython.org/FAQ
54http://docs.python.org/reference/simple_stmts.html
55http://docs.python.org/reference/expressions.html
56http://trac.cython.org/cython_trac/ticket/583
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integrate_python.py
def f(x):

return x*x

def integrate(a, b, N):
s = 0
dx = (b-a)/N
for i in xrange(N):

s += f(a + (i + 1./2.)*dx)*dx
return s

The test was performed on a 64-bit dual-core Intel Core i5-2520M CPU clocked at
2.50 Ghz with Intel Turbo Boost and Hyper-threading enabled, giving the total of
4 logical processor cores (each physical core being able to execute 2 CPU threads);
operating system is Gentoo Linux compiled for the x86_64 platform. Versions of
relevant software packages are listed below:

Python 2.7.1
GNU C Compiler 4.4.5; -O2 optimisation flag used when compiling C files
Cython 0.14.1+ (git revision 0.14.1-1002-g53e4c10)
PyPy 1.5.0-alpha0 with JIT compiler enabled
PyBayes 0.3 (contains test program sources)

Program abbreviations used in benchmark results:

c_omp C version, for loop parallelised using OpenMP
cy_typed_omp Cython version with all variables typed, parallelised using

prange()
pypy PyPy-executed Python version, single-threaded

c C version, single-threaded
cython_typed Cython version with all variables typed, single-threaded

cython Cython-compiled Python version, single-threaded
python Python version, single-threaded

typical benchmark run
Numerical integration from 0.0 to 3.0 of x^2 with 200000000 steps:

c_omp: result = 9.0; real time = 0.446s; cpu time = 1.72s
cy_typed_omp: result = 9.0; real time = 0.447s; cpu time = 1.73s

pypy: result = 9.0; real time = 0.851s; cpu time = 0.84s
c: result = 9.0; real time = 1.597s; cpu time = 2.00s

cython_typed: result = 9.0; real time = 1.590s; cpu time = 1.58s
cython: result = 9.0; real time = 33.26s; cpu time = 33.2s
python: result = 9.0; real time = 95.05s; cpu time = 94.8s

Relative speedups:
cython/python: 2.8571203030

cython_typed/cython: 20.9136660253
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c/cython_typed: 0.99693008347

cy_typed_omp/cython_typed: 3.55556994329
c_omp/c: 3.57674225915

c_omp/cy_typed_omp: 1.00186053812

The cpu time quantity is not reliable in our belief and is mentioned only for il-
lustration; all measurements are based on the real time quantity that measures
wall-clock time needed to perform the algorithm. The number of steps was chosen
artificially high to get timings that are easier to measure. The benchmark had lit-
tle variance in results across runs, the relative sample standard deviation (2.5) was
under 3% for all measured quantities (run times) with N = 10.

srel =
1

x

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (2.5)

The test produced a couple of interesting results: the same Python code was 2.9×
faster when compiled by Cython; we are convinced that this is due to the Python
interpreter overhead. Adding static type declarations to the Cython code resulted
in additional 21-fold speed-up giving the total 60× increase in performance of a
statically-typed Cython procedure compared to the dynamically typed Python one,
forming a very impressive result. Somewhat surprising results were obtained from
parallelisation tests — parallelised Cython version was 3.5× faster than equivalent
singe-threaded code on a system with only 2 physical processor cores, we speculate
that this is due to the Hyper-threading technology employed by the processor that
reduced wasted CPU cycles (where the CPU waits for memory fetches). Nonetheless
this shows that Cython (and C) parallelisation techniques using OpenMP scale very
well. C and Cython versions of the algorithm performed virtually equally in both
singe-threaded and multi-threaded cases giving an indication that Cython performs a
very good job at optimising Python code in such simple cases. Another surprise was
PyPy (operating on unmodified Python code) performance — it was considerably
faster that both C and optimised Cython code making it a very interesting option
once it supports NumPy.

We should however note that these extreme Cython performance gains are spe-
cific for such simple and highly numeric algorithms. We expect smaller benefits for
more high-level code; Kalman filter tests (section 3.4 on page 43) support our claims.

2.6.3 Discussion

Cython, in our view, fixes the last possible barrier (the CPython overhead) before
Python can be used for the desired library for Bayesian filtering. We consider
especially important that optimisation can be approached gradually — one can
write code purely in Python and add static type definitions only for performance
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critical parts (that show up as bottlenecks during profiling) and only once the high
performance is needed; Cython developers soundly discourage adding static types
everywhere. Second key feature of Cython, as identified by us and for out purposes,
is the pure Python mode. Employing Cython brings the disadvantages of compiled
languages, mainly a prolonged write-build-run-debug cycle. When the pure Python
mode57 is used, all these shortcomings are effectively voided (as the code works also
under plain Python) at the cost of very minor loss of programming convenience. We
expect that many potential library users don’t have high performance requirements,
these could ignore Cython entirely and use the library as any other plain python
module.

Python/Cython combination was therefore chosen as the implementation envi-
ronment for the desired library for recursive Bayesian estimation; the library was
named PyBayes and is presented in the next chapter.

57specifically, the variant where only augmenting files are used
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Chapter 3

The PyBayes Library

In this chapter the PyBayes library that is being developed with the aim to fulfil
the requirements posed in the previous chapter (p. 10) is presented. After a brief
introduction the library design, which builds on the performed software analysis,
is shown and discussed. Various development practices used are later examined
and the chapter is concluded by a performance comparison of various implementa-
tions of the Kalman filter (from PyBayes and BDM) benchmarked under 4 different
implementation environments.

3.1 Introduction to PyBayes

PyBayes1 is a Python/Cython library for recursive Bayesian estimation actively
developed by the author of this text, a result of the software analysis carried-out.
The development happens publicly and openly using the git2 version control system
on the GitHub3 source-code hosting service at the address http://github.com/
strohel/PyBayes that also serves as the home page of the project; PyBayes is also
accessible from the Python Package Index (PyPI).4 PyBayes is a free/open-source
software licensed under the GNU GPL5, version 2 or later. Version 0.3 of PyBayes is
described in this text; we expect PyBayes to evolve in future and thus some claims
present this chapter may become outdated. All currently planned future changes
are however mentioned at appropriate places.

The goal of PyBayes is to provide a Python library that satisfies the posed
requirements, is very convenient to develop with even when prototyping novel al-
gorithms, but fast enough to be deployed in production. Library design should be
object-oriented and very clean to be well comprehensible. In order to achieve both

1the name PyBayes had been previously used for an unrelated project dealing with Bayesian
networks by Denis Deratani Maua, who later proclaimed the project dead and allowed us to use
the name.

2http://git-scm.com/
3http://github.com
4http://pypi.python.org/pypi/PyBayes
5GNU General Public License: http://www.gnu.org/licenses/gpl.html
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of these usually contradicting demands, PyBayes uses a special technique where the
same source code can be interpreted by Python as usual (giving all advantages of
Python) or compiled using Cython which makes use of additional augmenting files
that are present in sources to provide static type declarations to performance-critical
code-paths; PyBayes thus employs Cython’s pure Python mode. The Cython build
is currently 50% to 200% faster than Python depending on the algorithm and level
of optimisation applied to it, see section 3.4 (p. 43) for example measurements. Py-
Bayes’ setup.py, the use of which is the standard way to install Python packages,
automatically detects whether Cython is installed on the system and uses it when
possible. NumPy’s ndarray (N-dimensional array) of Python floats6 is used as
principal numeric type for vectors and matrices for its low overhead, convenience
and interoperability.

PyBayes sources are maintained to be compatible with Python versions 2.5, 2.5
and 2.7; Python 3 compatibility can achieved using the 2to37 automatic code con-
version tool, the sources are kept to be convertible without interaction (CPython’s
-3 command-line can be used for this task). To promote code readability, coding
style prescribed by the PEP 88 is followed when feasible.

The sections below present the library design and explain some decisions taken
during development; they complement the PyBayes API Documentation, which
is a reference guide intended for PyBayes users. API Documentation is available on-
line at http://strohel.github.com/PyBayes-doc/.

All class diagrams in this text utilise standard UML9 notation and are not an
exhaustive reference of all classes, members and methods — they rather illustrate the
API Documentation; inherited attributes and methods are not shown in diagrams.
Unless noted otherwise, all references to files and folders in this chapter refer to the
respective files/folders in the PyBayes source code repository.10 Python software
nomenclature is used, most notably the following terms:

module a file with .py extension (but denoted without it) that contains Python
code and has its own namespace.

package a folder that contains above modules and possibly other packages; package
namespace is identical with its __init__ module that has to be present.

3.2 Library Layout

The source code of PyBayes is arranged as follows:
6Python float (numbers.Real) corresponds to C double
7http://docs.python.org/library/2to3.html
8Python Enhancement Proposal 8: http://www.python.org/dev/peps/pep-0008/
9Unified Modelling Language: http://www.uml.org/

10http://github.com/strohel/PyBayes
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doc/ control files for generating documentation (see also section 3.3).
examples/ auxiliary scripts and benchmark sources.
pybayes/ PyBayes Python package; the actual implementation is located in

this package.
scratch/ miscellaneous and temporary files.
thesis/ source code of this text.
tokyo/ source code of the Tokyo project, bundled with PyBayes (see sub-

section 3.2.7).
COPYING the text of GNU GPL v2, the PyBayes license.

HACKING.rst a guide for PyBayes developers; can be viewed as plain-text.
README.rst general information and installation instructions.

setup.py setup script, a tool to build and install PyBayes.

The pybayes package, the most important part that forms the actual PyBayes
library, contains 3 supportive packages that are considered private to PyBayes (that
may change without notice), and 2 following modules that form the public API of
the library (overview shown in Figure 3.1):

pdfs module contains a framework of probability density functions and related
classes.

filters module contains Bayesian filters.

All classes mentioned in this chapter are Cython extension classes in the Cython
build of PyBayes (for smaller overhead) and ordinary Python classes in the Python
“build“.

pdfs filters

RV
random variable

meta-representation

+name: string
+dimension: int

CPdf
possibly conditional

probability density function

+rv: RV
associated random variable

+cond_rv: RV
conditioned random variable

+eval_log(x,cond): float
log(f(x))

+sample(cond): vector
draw random sample

Pdf
probability density

function
(unconditional)

Filter

+bayes(yt,cond)
perform Bayes rule

+posterior(): Pdf
get posterior density

+evidence_log(yt): float
logarithm of marginal
likelihood

Figure 3.1: High-level overview of the PyBayes library; simplified

3.2.1 Probability Density Functions

Probability density functions have central role in the theory of Bayesian filtering and
thus should receive great attention during library design. Probability density func-
tions should be both flexible and lightweight as copying them is needed for example
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in the marginalized particle filter. In PyBayes probability density functions are mul-
tivariate (even distributions that cannot be generalised to multiple dimensions take
singe-valued vectors as parameters for consistency and easier static typing).

2 basic categories of probability density functions can be distinguished from the
implementation point of view: unconditional ones whose statistics are fixed once
the distribution is constructed and conditional probability density functions whose
statistics depend on a free parameter; depending on one’s standpoint, unconditional
probability density functions may be viewed as a subclass of unconditional ones
(that would have additional method set_condition(cond) or similar) or the other
way around where unconditional probability density function is viewed as a special-
isation of the conditional ones with a restriction that condition is empty. The latter
approach is used by PyBayes for being less error-prone in our belief. Alternatively,
conditional and unconditional densities could be unrelated (impractical in our case)
or unified in one class without specifying conditionality (in fact, PyBayes is not far
from this).

All probability density functions are represented using an abstract class CPdf
that provides interface for querying random variable and conditioning variable di-
mensions (methods shape() and cond_shape()), for computing expected value and
variance (methods mean() and varience()) that take condition as a parameter, for
computing natural logarithm of the probability density function value in a given
point (eval_log()) and for drawing random samples (sample()), both also accept-
ing condition in parameters. A few support methods for use by subclasses not are
provided to reduce code duplication, these aren’t discussed here. The CPdf class
also holds references to random variable and conditioning variable descriptions (at-
tributes rv and cond_rv) which are talked bout in the next chapter. By convention
rv and cond_rv to a valid RV object that can, however, signify “empty random
variable”.

CPdf
possibly conditional

probability density function

+rv: RV
associated random variable

+cond_rv: RV
conditioned random variable

+shape(): int
+cond_shape(): int
+mean(cond): vector
+variance(cond): vector
+eval_log(x:vector,cond): float
+sample(cond): vector
+samples(n:int,cond): matrix

Pdf
probability density function

(unconditional)

+cond_rv: RV = 0-component RV

+cond_shape(): int
returns 0

Figure 3.2: Class diagram of the probability density function prototypes

The Pdf is a very thin subclass of CPdf providing an implementation of the
cond_shape() that returns zero to signify empty condition; by convention, Pdf
subclasses also should set cond_rv to “empty random variable”. The function of the
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Pdf class is therefore rather semantic than technical distinction between conditional
and unconditional probability density functions.

Outline of probability density function prototypes is shown in the Figure 3.2.

3.2.2 Random Variable Meta-representation

In mathematics, the relation between random variables and probability density func-
tions is follows: a probability density function is associated to a random variable,
e.g. “random variable X is normally distributed”. This is impractical in software
(should drawing a million bare samples produce a million copies of a random vari-
able?) but let us show that the relation between random variables and probability
density functions couldn’t be entirely dropped without a substitution, let’s look at
that following example.

The chain rule for probability density functions is heavily used in Bayesian fil-
tering and should be adequately supported by software. While simple cases can be
represented without problems, when for example p(a,b|c,d) from (3.1) is desired
to be represented, additional information have to be supplied by the user (program-
mer) so that the implementation “knows” how and what parts of involved vectors
are passed to underlying densities p1 and p2. The implementation wouldn’t be able
to guess evaluation order, order of components in p1 condition etc. without such
additional information.

p(a,b|c,d) = p1(a|c,b)p2(b|d) (3.1)
z = (a,b, c,d) = (a1, a2, b1, b2, c1, c2, d1, d2) (3.2)

In software it is practical to combine both random and conditioning variable of
the left hand side of (3.1) into one vector; let z (3.2) denote such vector (a,b, c,d
are thus all two-dimensional). Now suppose that the implementation has to pass
the vector representing condition (c,b) to the distribution p1 assuming that p2 was
already evaluated. The problem that the software must solve therefore reduces to
the task of finding indexes of the (c,b) components within vector z; the solution is
indeed an index vector (5, 6, 3, 4), assuming one-based indexing.

The first option of passing such information from the user to the implementation
would be to force her to specify the relations between distributions manually using
index vectors (or a similar measure) directly; we believe that it is however error-prone
and inconvenient. The other method is to make a symbolic association between
probability density functions and random variable descriptions, but the other way
around — probability density functions would “contain” the description of random
variables they make use of, in our example above p1 would contain an information
that it is associated with random variable (a) and conditioning variable (c,b).

The second approach is used in PyBayes even though it brings some computa-
tional overhead (that we think is worth the simplicity it brings). As mentioned in the
previous section, the CPdf class has rv and cond_rv attributes that hold instances
of the RV class. Simply put, the concept of random variable meta-representation
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can be viewed as a kind of semantic, or symbolic indexing that should make the life
of the PyBayes user easier.

The RV class is essentially a list of “random variable components” represented
using the RVComp objects. RV provides a few methods to test relationships between
2 random variables (whether a RV is subset of another RV etc.) and one notable
method, indexed_in() (that happen to be shown in the Figure 3.7 on page 43).
Suppose that RV x has components (x1, x2, . . . , xn) and RV y is a subset of x and
contains components (xi1 , xi2 , . . . , xim); y.indexed_in(x) then returns an index
array (i1, i2, . . . , im) which is suitable for NumPy array indexing methods.11

The RVComp class is a simple container for the dimension (which must be
greater than zero) and name (which is optional) attributes; RV caches aggregate
name and dimension. An important principle in PyBayes is that RVComp com-
parisons are instance-based : 2 RVComp objects are considered equal if and only if
they refer to the same instance.12 This is fast (compared to for example name-based
equality), saves memory, prevents collisions and is convenient in Python thanks
to its call-by-object semantics. The effects are best demonstrated in the following
recording of an interactive Python session:

RV and RVComp demonstration
>>> rv = RV(RVComp(1, "a"))
>>> rv.contains(RVComp(1, "a"))
False

>>> a = RVComp(1, "pretty name")
>>> b = RVComp(1, "pretty name") # same name, different instance
>>> rv = RV(a)
>>> rv.contains(a)
True
>>> rv.contains(b)
False

A RVComp without a name (with name attribute set to None), that can be called
anonymous component, is created in CPdf when the user doesn’t pass RV to the
constructor, but is otherwise insignificant.

The concept of random variables might be used also for some Bayesian filters in
future should there be a need for it. On the other hand, documented conventions
(such as ordering of vector components) are used rather than RVs where feasible.
Overview of RV and RVComp classes can be seen in the Figure 3.3.

11the notation used here is simplified; actual implementation allows for multivariate components
xi — ij in returned index array are therefore ranges of integers.

12the name attribute thus serves only for aesthetic purposes.
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RVComp
random variable component

+name: string
+dimension: int

RV
random variable

meta-representation

+name: string
+dimension: int
+components: list

+contains(component): bool
+contains_all(test_components): bool
+contains_any(test_components): bool
+contained_in(test_components): bool
+indexed_in(super_rv:RV): vector

0..*

Figure 3.3: Class diagram of the random variable framework

3.2.3 Gaussian Probability Density Functions

We continue by a brief mention of implemented probability density functions; our
policy is to add new distributions on as-needed basis rather than trying to have
exhaustive set from the beginning. Every user of PyBayes can create its own distri-
butions by subclassing Pdf of CPdf and implementing meaningful methods (there is
no requirement for implementing unused methods).

PyBayes ships standard multivariate normal (Gaussian) probability density func-
tion through the GaussPdf class; related log-normal probability density function
LogNormPdf is also provided and shares common abstract superclass, Abstract-
GaussPdf with GaussPdf. The AbstractGaussPdf class only holds mean attribute
mu and covariance matrix attribute R and is useful mainly for the family of condi-
tional Gaussian probability density functions described below.

The most general conditional Gaussian distribution is the GaussCPdf class that
takes two functions f and g as parameters13 plus the optional base_class param-
eter in constructor. The base_class parameter defaults to GaussPdf, but can be
set tu LogNormPdf (to any AbstractGaussPdf subclass in general); the base class
parameter determines resulting density — both conditional normal and log-normal
distributions can be obtained without any code duplication, thanks to abstraction
provided by AbstractGaussPdf. GaussPdf transforms supplied condition c using
(3.3), substitutes to AbstractGaussPdf and calls respective base_class method.

µ = f(c)

R = g(c)
(3.3)

First specialisation of GaussCPdf is the LinGaussCPdf class that assumes that
f and g functions are linear, the transformation is thus according to (3.4) where
condition is divided into parts (c1, c2). The A, C (matrices), b and d (vector) param-
eters are passed to the constructor. LinGaussCPdf exists mainly for performance
reasons and slightly higher convenience when passing arrays compared to functions;

13currently any Python callable objects are accepted; NumPy ufunc class will be evaluated for
suitability in future.
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LinGaussCPdf also benefits from generalisation offered AbstractGaussPdf.

µ = Ac1 + b

R = Cc2 + d
(3.4)

The last GaussCPdf specialisation is the MLinGaussCPdf class which works al-
most identically as LinGaussCPdf with the exception that the R (covariance) param-
eter is fixed. Transformation used by MLinGaussCPdf is thus defined by (3.5) where
c is the conditioning variable. MLinGaussCPdf also supports setting base_class
as usual.

µ = Ac+ b (3.5)

See the Figure 3.4 for a survey of Gaussian and related probability density func-
tions.

Pdf
probability density

function (unconditional)

AbstractGaussPdf
common superclass for mean +
covariance-based distributions

+mu: vector
mean

+R: matrix
covariance

GaussPdf
normal distribution

LogNormPdf
log-normal distribution

MLinGaussCPdf
conditional (log-)normal

distribution; mean is linear
function of condition

CPdf
possibly conditional

probability density function

LinGaussCPdf
conditional (log-)normal

distribution; mean and cov
linear functions of condition

GaussCPdf
general conditional

(log-)normal distribution

Figure 3.4: Class diagram of Gaussian and related distributions

3.2.4 Empirical Probability Density Functions

Another very useful set of distributions is the empirical family suitable for particle
filters. Weighted empirical distribution named EmpPdf in PyBayes is the posterior
probability density function of the particle filter while a special product of weighted
empirical distribution and a mixture of Gaussian distributions is the posterior proba-
bility density function of the marginalized particle filter and is thus named Marginal-
izedEmpPdf. Both inherit from AbstractEmpPdf in order to reuse code. Neither
of the empirical densities implement eval_log() or sample() — while the latter
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would be possible, we are yet to find a valid use-case for it (resampling particles
being implemented differently).

The AbstractEmpPdf class holds the weights parameter, a vector of particle
weights denoted as ω = (ω1, ω2, . . . , ωn) in formulas. The usual constraints (3.6)
must hold. A simple method normalise_weights() normalises weights according
to (3.7).

ωi >= 0 ∀i
n∑

i=1

ωi = 1 (3.6)

ω′i =
ωi∑n
i=1 ωi

(3.7)

AbstractEmpPdf provides one more method called get_resample_indices() that
(given that there are n particles) draws n random samples from itself and returns
their indices. The algorithm is however optimised in a way that only one random
sampling is performed; the results are thus more predictable (or, “less random”),
but this is desired when used for resampling in particle filters — its primary (and
currently only) use.

The EmpPdf class is the standard weighted empirical distribution (3.8) that
extends AbstractEmpPdf with the particles attribute (a matrix) where each row
x(i) represents one particle. It also provides the resample() method that resam-
ples particles using get_resample_indices() and resets weights to be uniformly
distributed. EmpPdf has an extra role in PyBayes, it is used to test sample() of
other probability density functions using the moment method (sufficient number of
samples is generated and sample mean and variance is compared with theoretical
results).

p(x) =
n∑

i=1

ωiδ(x− x(i)) (3.8)

Related to the empirical density is the MarginalizedEmpPdf that exists solely to
form the posterior probability density function of the marginalized particle filter. It
extends AbstractEmpPdf with a vector of GaussPdf objects gausses, i-th GaussPdf
is denoted as N

(
â(i), P (i)

)
and a matrix particles where i-th row is denoted as b(i)

in (3.9).

p(a, b) =
n∑

i=1

ωi

[
N
(
â(i), P (i)

) ]
a
δ(b− b(i)) (3.9)

MarginalizedEmpPdf doesn’t provide a method for resampling as this task have
to be done in the particle filter implementation anyway at it has to deal also with
the Kalman filters.

The class diagram of empirical probability density functions and related is dis-
played in the Figure 3.5.
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Pdf
probability density

function (unconditional)

AbstractEmpPdf
common superclass for

particle-based distributions

+weights: vector

+normalise_weights()
+get_resample_indices(): vector

EmpPdf
weighted empirical

distribution

+particles: matrix

+resample()

MarginalizedEmpPdf
(cartesian) product of gaussian mixtures and
weighted empirical distributions; posterior of

marginalized particle filter

+gausses: GaussPdf[]
+particles: matrix

Figure 3.5: Class diagram of empirical distributions

3.2.5 Other Probability Density Functions

We conclude the discussion about the implemented probability density functions
with the ones that don’t fit elsewhere.

The ProdPdf class represents unconditional product of n independent random
variables x1, x2, . . . , xn as depicted in (3.10). As an exception from the general rule,
ProdPdf constructs its random variable association (the rv attribute) using factor
random variables for convenience; it however currently doesn’t make any use of
the random variable meta-representation as it would be of limited usability — only
permutation of random variable components within xi (∀i) would be additionally
possible (the order of factors is already specified by the user. ProdPdf implements all
abstract methods of Pdf by delegating work to factor probability density functions.

p(x1, x2, . . . , xn) = p1(x1)p2(x2) · · · pn(xn) (3.10)

A more sophisticated variant of the ProdPdf is the ProdCPdf class that is po-
tentially conditional and allows for conditionally dependent random variables. In
general it can represent a chain rule for probability density functions shown in (3.11)
with an additional constraint that the right hand side makes sense (that means
that there exists a sequence (pj1 , pj2 , . . . , pjm) for which (3.12) holds). The relation
“C ⊂ {xi, xj, xk, . . . }” denotes “random variable C is composed of the (subset of)
xi, xj, xk, . . . random variable components” in the following formulas.

p(x1, x2, . . . , xm|xm+1, xm+2, . . . , xn) = p1(x1|C1)p2(x2|C1) · · · pm(xm|Cm)

where m ≤ n; ∀i ∈ {1, 2, . . . ,m} : Ci ⊂ {x1, x2, . . . , xn}
(3.11)

∀k ∈ {1, 2, . . . ,m} : Cjk ⊂ {x1, x2, . . . , xk−1} ∪ {xm+1, xm+2, . . . , xn} (3.12)

As in ProdPdf, all abstract methods of CPdf are implemented. ProdCPdf makes
extensive use of the random variable meta-representation described earlier; it uses
random variable descriptions of factor densities p1, p2, . . . , pm to construct the data-
flow (the (pj1 , pj2 , . . . , pjm) sequence); the order of passed factor distributions is
therefore insignificant — ProdCPdf always computes correct evaluation order if it
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exists. For this reason the random variable components of factor probability density
functions need to be specified (at least those that are “shared” between multiple
factor distributions). Currently, there is also a limitation that compound random
variable representations have to be additionally passed to ProdCPdf; in future,
ProdCPdf will be able to infer compound random variables from factor distributions.
Following code example constructs a simple probability density function from (3.13):

p(a, b) = p1(a|b)p2(b) (3.13)
ProdCPdf example

# prepare random variables:
a, b = RVComp(m, "name of a"), RVComp(n, "b name")
p_1 = SomeCPdf(..., rv=RV(a), cond_rv=RV(b))
p_2 = OtherPdf(..., rv=RV(b))
p = ProdCPdf((p_1, p_2), rv=RV(a, b), cond_rv=RV()) # empty cond_rv

# version 0.4 of PyBayes will allow:
p = ProdCPdf((p_1, p_2))

PyBayes also provides a multivariate uniform distribution which is implemented by
the UniPdf class.

3.2.6 Bayesian Filters

Bayesian filters are the raison d’être of PyBayes. It turned out however that with
a solid framework of probability density functions, their implementation is rather
straightforward. All filters in PyBayes extend an abstract class Filter that acts
as a prototype of all filters. Filter defines following methods that can/should be
implemented by subclasses:

• bayes(yt : vector, cond : vector = None)
compute posterior probability density function given the observation yt; seman-
tics of the optional cond parameter are defined by filter implementations. The
method name comes from the fact that computing the posterior probability den-
sity function involves applying (exact or approximate) Bayes rule; see (1.4) on
page 3.
• posterior() : Pdf

return a reference to the posterior probability density function p(xt|y1:t) (1.5)
(p. 3).
• evidence_log(yt : vector) : float

return logarithm of the marginal likelihood p(yt|y1:t−1) (1.6) (p. 4) evaluated
in point yt. Subclasses may choose not to implement this method if it is not
feasible.

Fists subclass of Filter is the KalmanFilter class that implements slightly extended
version of the Kalman filter presented in the first chapter — KalmanFilter can
optionally accept control vector in its bayes method (passed through the cond
parameter) making it suitable also for the theory of Bayesian decision-making.
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Speaking about the particle filter family, it has been suggested in [15] that the
particle filter and the marginalized particle filter can be merged into one general
class using a recursive structure of classes representing the Bayes rule (e.g. Filter
in PyBayes). This approach has not been used in PyBayes for performance and
simplicity reasons. On the other hand, particle filters in PyBayes offload much
work to probability density functions in PyBayes where code is reused thanks to
AbstractEmpPdf.

The ParticleFilter class implements a simple version of the particle filter as pre-
sented in the first chapter. ParticleFilter takes the process model p(xt|xt−1) and the
observation model p(yt|xt) distributions in constructor (along with the initial den-
sity and number of particles) and employs resample() and normalise_weights()
of the EmpPdf class that it uses for the posterior distribution. ParticleFilter cur-
rently doesn’t support specifying the proposal density, although it is planned in
future.

Filter
Bayesian filter prototype

+bayes(yt:vector,cond:vector=None)
+posterior(): Pdf
+evidence_log(yt:vector): float

KalmanFilter
+gauss: GaussPdf

ParticleFilter
+emp: EmpPdf

MarginalizedParticleFilter
+memp: MarginalizedEmpPdf
+kalmans: KalmanFilter[]

#_resample()

AbstractEmpPdf

EmpPdf

MarginalizedEmpPdf

Figure 3.6: Class diagram of Bayesian filters

MarginalizedParticleFilter also implements the respective algorithm shown in the
first chapter and offloads some work to its posterior probability density function,
MarginalizedEmpPdf, but has to provide its own array of KalmanFilter objects.
The MarginalizedParticleFilter class ensures that the i-th Kalman filter shares its
posterior Gaussian distribution with MarginalizedEmpPdf’s i-th particle. This is
the reason why resampling cannot be done in MarginalizedEmpPdf and is instead
performed in the _resample() method of MarginalizedParticleFilter that makes use
of the get_resample_indices() method of AbstractEmpPdf.

In constructor MarginalizedParticleFilter accepts the initial distribution of the
state vector p(x0) = p(a0, b0), process model of the empirical part of the state vector
p(bt|bt−1), the class of the desired Kalman filter implementation (that has to be a
subclass of KalmanFilter) and its parameters in form of a Python dictionary. That
way, thanks to Python capabilities, MarginalizedEmpPdf will support other variants
of the Kalman filter in future without a need to be changed. It also means that the
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observation model is specified using the Kalman filter implementation and parame-
ters for it, which makes MarginalizedParticleFilter more flexible. The process model
is given by the combination of p(bt|bt−1) and supplied Kalman filter implementation
(and its parameters). Current implementation hard-codes bt to be the observation
and process noise of the modelled system; this silly limitation will be lifted in future
where MarginalizedParticleFilter will pass the bt vector as the cond argument to the
bayes() method of the specified Kalman filter implementation.

A diagram of filtering classes in shown in the Figure 3.6.

3.2.7 Wrappers

Favourable performance was one of the criteria for the desired library for Bayesian
filtering. When the performance of the KalmanFilter class was benchmarked with
a small system (both state and observation vectors were 2-dimensional); it was
discovered that a great portion of total run time was spent in the boilerplate code
of NumPy functions dot() (for matrix product) and inv() (for matrix inversion).
Even though NumPy uses BLAS and LAPACK internally, the time spent in the
intermediate Python code was unacceptable (it was probably made more visible due
to the small size of the system); see the subsection 2.6.1 on page 22 for information
about Cython ↔ NumPy co-operation.

Fortunately, a project that approaches popular BLAS and LAPACK functions
more directly was found: Shane Legg’s Tokyo14 wraps BLAS (and a couple of LA-
PACK) procedures in Cython using NumPy’s ndarray data-type. Quick tests have
shown great speed-ups — the mentioned functions ceased to be performance bottle-
necks. It was therefore decided that the Tokyo project should be used in the Cython
mode of PyBayes and it was forked15 on github to provide a couple of bug-fixes we
made to the public. For convenience, Tokyo is also bundled with PyBayes releases
and is built along it to reduce dependencies on obscure libraries.

A special approach in PyBayes has been taken in order to support both Python
and Cython mode: wrapper modules for numpy and numpy.linalg were created
in the pybayes.wrappers package; Python versions of the wrappers (.py files) just
import appropriate NumPy modules. Cython versions do nearly the same, but
provide own implementations (that call Tokyo) of the offending NumPy functions
(and delegate the rest to NumPy). Other code then imports wrappers._numpy
instead of numpy, likewise for numpy.linalg.

3.3 Documentation and Testing

Second pillar of each well-written software library is, in our belief, its documentation;
the first one being the library design and the actual implementation being no better

14http://www.vetta.org/2009/09/tokyo-a-cython-blas-wrapper-for-fast-matrix-
math/

15https://github.com/strohel/Tokyo
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than the third pillar (in our view, the implementation can be easily modified in
a well-designed library). PyBayes reflects that and puts great emphasis on the
API Documentation, that is accessible on-line at http://strohel.github.com/
PyBayes-doc/.

Documentation is generated almost solely from the documenting comments —
Python “Docstrings” as defined in PEP 257,16 using the Sphinx Python documen-
tation generator.17 Sphinx supports additional syntax in Docstrings and is able to
generate documentation in a wide range of formats including HTML, Qt Help,18
Devhelp,19 LATEX, PDF, man-pages and many others. One very valuable feature of
Sphinx is the ability to parse LATEX-encoded mathematics embedded directly into
Docstrings; these are then rendered to images in HTML output for example.

Every publicly available class and method in PyBayes is extensively documented
and enhanced with mathematical formulas where appropriate. We believe that this
approach makes PyBayes more easily usable by mathematicians and eliminates any
possible misunderstanding of the textual description of classes and methods. An
example of how Docstrings look like in code can be seen in the Figure 3.7. We must
say we are very satisfied with Sphinx can only recommend using it.

As noted in the discussion about dynamically-typed languages, almost all pro-
grammer errors in such languages are only discovered at runtime, therefore a need
for a comprehensive test-suite was stressed out. PyBayes follows this advice and
provides two packages that accomplish testing:

• pybayes.tests
package contains unit-tests of virtually all PyBayes classes and methods. Unit-
testing evaluates classes and methods in isolation (to highest possible extent)
and therefore forms an excellent tool for finding precise location of possible bugs.
Unit-testing should last no longer than a few seconds so that it can be run on per-
commit basis. One problem faced in PyBayes are non-deterministic methods such
as CPdf.sample() or bayes() methods of particle filters. sample() methods
are currently tested by generating high enough number of particles and then
comparing their mean and variance with theoretical values. Another option
would be mocking the random number generator to force deterministic results,
this could however produce false-positives when an implementation of a given
sample() method changed.
PyBayes currently contains 99 unit-tests that run in approximately 0.2 seconds.
• pybayes.stresses

package contains so-called stress-tests — longer-running procedures that test
greater portion of code and cooperation if individual modules. Results of stresses
are not intended be checked automatically, they rather require human evaluation.
PyBayes currently has three stresses, one for each Bayesian filter implementation,
that are run with various parameters to ensure that the filters produce valid-
looking results, to measure their performance, and (for particle filters) to test

16Python Enhancement Proposal 257: http://www.python.org/dev/peps/pep-0257/
17http://sphinx.pocoo.org/
18http://doc.qt.nokia.com/qthelp-framework.html
19http://live.gnome.org/devhelp
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their convergence as the number of particles increases.

To ensure that all code-paths are properly tested, it is advisable to employ a code
coverage tool that shows which code statements were visited during tests. We’ve
used Ned Batchelder’s excellent coverage.py20 to discover that 86% statements in the
pdfs module and 83% statements in the filters module are covered by tests and
stress-tests combined. An example output of coverage.py is shown in the Figure 3.7,
where everything except one code-path throwing an exception is covered by a test.
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        **test_components**.

        :param test_components: list of components whose presence is checked
        :type test_components: sequence of :class:`RVComp` items
        """
        for test_comp in test_components:
            if not self.contains(test_comp):
                return False
        return True;

    def contains_any(self, test_components):
        """Return True if this RV contains any of **test_components**.

        :param test_components: sequence of components whose presence is tested
        :type test_components: sequence of :class:`RVComp` items
        """
        for test_comp in test_components:
            if self.contains(test_comp):
                return True
        return False

    def contained_in(self, test_components):
        """Return True if sequence **test_components** contains all components
        from this RV (and perhaps more).

        :param test_components: set of components whose presence is checked
        :type test_components: sequence of :class:`RVComp` items
        """
        for component in self.components:
            if component not in test_components:
                return False
        return True

    def indexed_in(self, super_rv):
        """Return index array such that this rv is indexed in **super_rv**, which
        must be a superset of this rv. Resulting array can be used with :func:`numpy.take`
        and :func:`numpy.put`.

        :param super_rv: returned indices apply to this rv
        :type super_rv: :class:`RV`
        :rtype: 1D :class:`numpy.ndarray` of ints with dimension = self.dimension
        """
        ret = np.empty(self.dimension, dtype=int)
        ret_ind = 0  # current index in returned index array
        # process each component from target rv
        for comp in self.components:
            # find associated component in source_rv components:
            src_ind = 0  # index in source vector
            for source_comp in super_rv.components:
                if source_comp is comp:
                    ret[ret_ind:] = np.arange(src_ind, src_ind + comp.dimension)
                    ret_ind += comp.dimension
                    break;
                src_ind += source_comp.dimension
            else:
                raise AttributeError("Cannont find component "+str(comp)+" in source_rv.components.")
        return ret

class CPdf(object):
    r"""Base class for all Conditional (in general) Probability Density Functions.

    When you evaluate a CPdf the result generally also depends on a condition
    (vector) named `cond` in PyBayes. For a CPdf that is a :class:`Pdf` this is
    not the case, the result is unconditional.

    Every CPdf takes (apart from others) 2 optional arguments to constructor:
    **rv** (:class:`RV`) and **cond_rv** (:class:`RV`). When specified, they
    denote that the CPdf is associated with a particular random variable (respectively
    its condition is associated with a particular random variable); when unspecified,
    *anonymous* random variable is assumed (exceptions exist, see :class:`ProdPdf`).
    It is an error to pass RV whose dimension is not same as CPdf's dimension
    (or cond dimension respectively).

    :var RV rv: associated random variable (always set in constructor, contains
       at least one RVComp)
    :var RV cond_rv: associated condition random variable (set in constructor to
       potentially empty RV)

    *While you can assign different rv and cond_rv to a CPdf, you should be
    cautious because sanity checks are only performed in constructor.*

    While entire idea of random variable associations may not be needed in simple
    cases, it allows you to express more complicated situations. Assume the state

Coverage for /usr/local/lib64/python2.7/site-pac... file:///home/strohel/projekty/pybayes/sandbox/h...

3 of 16 07/23/2011 09:16 PM

Figure 3.7: coverage.py shows that one code-path in indexed_in() is uncovered

3.4 Performance Comparison with BDM

The chapter about the PyBayes library is concluded by a benchmark of four various
Kalman filter implementations from PyBayes and BDM [19]. All tested implementa-
tions use exactly the same algorithm and equivalent data-types, neither is explicitly
parallelised (however, see notes about MATLAB), operate on the same data and
gave exactly the same results as shown in the Figure 1.1 on page 6. Following
versions of involved software were used:

Python 2.7.1
GNU C Compiler 4.4.5; -O2 optimisation flag used when compiling C files
Cython 0.14.1+ (git revision 0.14.1-1002-g53e4c10)
MATLAB 7.11.0.584 (R2010b) 64-bit (glnxa64)
PyBayes 0.3
BDM SVN revision r1378

20http://nedbatchelder.com/code/coverage/
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The test was performed on a 64-bit dual-core Intel Core i5-2520M CPU clocked
at 2.50 Ghz with Intel Turbo Boost and Hyper-threading enabled; operating system
is Gentoo Linux compiled for the x86_64 platform.

The test consists of running 3000 iterations of the Kalman filter with various
state-space dimensions: 2, 30 and 60; observation vector is has the same dimen-
sionality as the state vector. Wall-clock time needed to complete all iterations is
measured. Each implementation was tested 10 times, mean values are shown; to
measure variance across runs, relative sample standard deviation srel computed us-
ing (2.5) (page 27) was measured. Additionally, relative speed-up with regards to
reference version PyBayes Cy is displayed for illustration. Following versions of
Kalman filter/implementation environments were under test:

PyBayes Py
KalmanFiler class from PyBayes pybayes/filters.py; Python build

PyBayes Cy
KalmanFiler class from PyBayes pybayes/filters.py; Cython build

MATLAB imper.
Imperative MATLAB implementation where the whole algorithm is written in
a single for loop; comes from BDM, file library/tests/stressuite/kalman_
stress.m. While not explicitly parallelised, later experiments shown that MAT-
LAB implicitly parallelised the code behind curtain at least in higher-dimensional
cases.

MATLAB o-o
Object-oriented MATLAB implementation from BDM where the filter and Gaus-
sian probability density function is represented using MATLAB classes; file
applications/bdmtoolbox/mex/mexKalman.m.

BDM
Object-oriented C++ class KalmanFull from BDM implemented in /library/
bdm/estim/kalman.cpp.

Benchmark results are shown in tables 3.1 to 3.3. The greatest variance in results
is achieved in a small (2-dimensional) system, where the C++ version is the fastest,
outperforming Cython build of PyBayes by 260%, and object-oriented MATLAB
version is embarrassingly 15× slower than the PyBayes Cy.

Raising the dimensionality of state-space to 30 produced more even results with
object-oriented MATLAB still lagging behind, PyBayes Cy and C++ version from
BDM being nearly equal and imperative MATLAB version taking lead by being
approximately 30% faster.

A huge 60-dimensional system sees PyBayes Py, PyBayes Cy and BDM versions
being even closer, imperative MATLAB version extending its advantage and object-
oriented MATLAB version still largely unusable due to its poor performance.

The chart shown in the Figure 3.8 allows for some speculations about possible
reasons of performance differences. First, it seems that the Python version adds
moderate per-statement overhead that doesn’t raise with number of dimensions (we
blame NumPy for Python version being on par with the C++ and Cython versions)
while object-oriented MATLAB adds enormous overhead that worsens slightly with
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PyBayes Py PyBayes Cy MATLAB imper. MATLAB o-o BDM
time [s] 0.254 0.091 0.069 1.378 0.026

srel 4.4% 4.2% 8.5% 4.1% 9.3%
speedup 0.4× 1.0× 1.3× 0.1× 3.6×

Table 3.1: Performance of Kalman filters: 2-dimensional state-space

PyBayes Py PyBayes Cy MATLAB imper. MATLAB o-o BDM
time [s] 0.689 0.535 0.424 1.780 0.518

srel 3.0% 5.4% 5.9% 2.7% 5.7%
speedup 0.8× 1.0× 1.3× 0.3× 1.0×

Table 3.2: Performance of Kalman filters: 30-dimensional state-space

PyBayes Py PyBayes Cy MATLAB imper. MATLAB o-o BDM
time [s] 2.120 1.816 1.274 3.849 1.948

srel 2.4% 2.6% 6.3% 9.9% 2.1%
speedup 0.9× 1.0× 1.4× 0.5× 0.9×

Table 3.3: Performance of Kalman filters: 60-dimensional state-space

number of dimensions.

The clear advantage of the imperative MATLAB version can be accounted to its
capability to parallelise code behind the scenes, in our belief. Our informal late tests
have shown that it performs very close to the PyBayes Cy version on uniprocessor
systems.
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Figure 3.8: Run time against dimensionality of various Kalman filter implementa-
tions
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Conclusion

The theory of Bayesian filtering is introduced in the first chapter and the optimal
Bayesian solution of the problem of recursive estimation is derived. Continues a
survey of well-known Bayesian filtering methods — the Kalman filtering, particle
filtering and the marginalized particle filtering is described and properties of indi-
vidual algorithms are discussed.

The second chapter contains a software analysis performed with the aim to iden-
tify the best approach to software development and programming language for a
desired library for Bayesian filtering. Object-oriented approach is chosen along with
the Python programming language, which is found optimal except its potentially
significant computational overhead. Cython is evaluated for the task to improve
Python performance with great success: a simple Python algorithm was 60× faster
when compiled using Cython.

The last chapters presents the PyBayes library that was developed as a part
of this thesis. PyBayes builds on the software analysis performed in the previ-
ous chapter and is therefore object-oriented and uses Python/Cython combination
as its implementation environment and implements all presented Bayesian filtering
methods. To compare performance of Python/Cython combination in a real-world
example, the Kalman filter from PyBayes is benchmarked against MATLAB and
C++ implementations from BDM [19] with favourable results.

We believe that the key contributions of this thesis are:

• The performed software analysis, that can be reused for a wide variety of soft-
ware projects. In particular, we have shown that the choice of a high-level and
convenient language such as Python is not necessarily the enemy of speed. The
analysis includes benchmarks with quite surprising results that show that Cython
and PyPy are great speed boosters of Python.
• The PyBayes library itself. While it is not yet feature-complete, it provides a

solid base for future development and is unique due to its dual-mode approach:
it can be both treated as ordinary Python package with all the convenience it
brings or compiled using Cython for performance gains.

Future work includes extending PyBayes with more filtering algorithms (non-liner
Kalman filter variants etc.) in the long term and fixing little inconveniences that
currently exist in PyBayes in the sort term; version 0.4 that would incorporate all
future changes mentioned in the third chapter is planned to be released within a
few months. We are also looking forward to incorporate emerging projects into our
software analysis, for example the PyPy project looks very promising.
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